

MONITOR type MNH2

No. 07.23/10.4.1

<Three in one = hydrant + water launcher + isolating pre-valve>

TECOOP - ENG D.O.O

MONITOR type MNH2

<Three in one = hydrant + water launcher + isolating pre-valve> <Double reliability = use even when main valve is defective> <High flow: Kv=265 m³/h>

Basic technical characteristics:

Water launcher:

Hvdrant:

* Safe = compliant with the requirements of the standard EN 14384 = (€

type BV 1

type BV 2

- See "Procurement data" L1/2
- * flow: $Kv = 265 \text{ m}^3/\text{h}$, for Di = 2x65
- * moment of activation Mot<45 Nm, Class 1
- * moment of breakage (at point 4.1) due to force F..... M=7500 Nm
- * foundation
- * weight $\sim (55 \div 92)$ daN for Hi (1350 \div 1850) mm
- * materials:
 - hydrant bodynodular cast / stainless steel
 - spindle and obturator seatstainless steel
 - sealants.....polypropylene/elastomers
 - cap, and outlet couplings.....aluminium

- nominal openings....Di = 65 mm....Di = 100 mm- nominal pressurePN 16 bar
- choice of jet shape
- choice of jet directionvertically / horizontally
- fixing the selected jet position

(4.1)

- materials:
 - bodysteel - nozzle.....aluminium
 - sealantselastomers

F=M/a

 m_A =Fxb

 $F_A = F$

Load scheme

Advantages:

- * Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:
 - use of the hydrant and in case the main valve (3) is broken,
 - that the other hydrants remain in operation even when the main valve seal is replaced
 - automatic stop of water leakage, in case of breakage(4.1) due to force F,
 - to omit a separate isolation valve in front of the hydrant,
 - lower cost of construction and maintenance of the hydrant network.
- * High flow: $Kv=265 \text{ m}^3/\text{h}$, for Di=2x65
- * Replacing the main valve seal(3): without digging up the ground and without disassembling the body(4),
- * The threaded part of the obturator is: out of the water flow, permanently lubricated, maintenance-free throughout its working life,
- * Prevented damage to the supply pipeline = breakage at point 4.1, due to force F,
- * Activation without additional tools, by turning the cap (5) on top of the hydrant,
- * Possibility of blocking (6) unauthorized activation
- * The main valve seal is conical, self-flushing = dirt retention prevented = longer service life of the seal,
- * High strength of the obturator and body of the hydrant, MsT > 250 Nm,
- * Easy activation: Class 1, MOT < 45 Nm (max allowed 130 Nm; Class 3),
- * Quick activation: 1 turn until water appears, 10 turns until maximum flow (max. 15 turns allowed),
- * High reliability of the drainage system = two outlet openings, and self-flushing drainage valve
- * The possibility of easy control (7) of the correctness of closing and draining.
- * Obturator tightness even after 1000 activations,
- * Amount of residual water in the body of the hydrant, < 80 cm³ (max. allowed 150 cm³),
- * Fast draining, ≤5 min (permitted max. 10 min/m),
- * Easy replacement of seat, main valve (3) and pre-valve (2)
- * Drain valve repair (14.1); from the outside, partial excavation, and without dismantling the hydrant body.(4)

Documents with the delivery of hydrant:

* Declaration of Performance.

* Instruction for safety work (installation, handling, inspection, maintenance, guarantee)

Flow of hydrant:

 $Q = K_v \times (1000\Delta p / \rho)^{1/2}$

- flow...... $Q = [m^3/h]$

- flow coefficient...... $K_v = [m^3/h]$ - pressure difference..... $\Delta p = [bar]$

- water density...... $\rho = [kg/m^3]$

Srbija - 26000 PANČEVO, Savska 12 - 14. Tel. +381 13 346226 Tel./Fax +381 13 346042 www.tecoop.co.rs / tecoopeng@mts.rs